89 research outputs found

    Road development and Indigenous hunting in Tanah Papua: Connecting the facts for future wildlife conservation agendas

    Get PDF
    Road development is increasing worldwide. Generally, examples of road building in tropical countries demonstrate that road access can assist the fight against rural poverty, but such developments are also linked to deforestation, pollution, invasions of exotic species, and environmental degradation. For Papua and West Papua provinces (Tanah Papua) in Indonesia, the development of the provincial road network is intended to improve the rural economy, aiming to alleviate poverty within isolated rural areas. However, road development can pose particularly challenging problems to rural and Indigenous communities. Poorly planned roads can be devastating when they provide easy access to illegal hunting that threatens endangered species. In this study, we discuss how road development in Tanah Papua has changed indigenous hunting. Native Papuans have benefited from improved road access, which allows them to sell their agricultural products at local markets. Increased road connectivity has also changed how local people use natural resources and forest products, moving from subsistence to a more market-based orientation. Although policies on infrastructure development including roads form part of Indonesia’s national program, they are not automatically compatible with a sustainable development program in Tanah Papua. To foster more equitable and sustainable road development, government agencies must improve their overall coordination of further road expansion plans by promoting green infrastructure that supports the sustainable use of natural resources in a way that is reconciled with traditional knowledge of local people. Such efforts may also have positive effects on the efforts to protect biodiversity within the wider government conservation agendas

    Predicted alteration of vertebrate communities in response to climate-induced elevational shifts

    Get PDF
    Aim: Climate change is driving species to migrate to novel areas as current environments become unsuitable. As a result, species distributions have shifted uphill in montane ecosystems globally. Heterogeneous dispersal rates among shifting species could result in complex changes to community assemblages. For example, interspecific differences in dispersal ability could lead to the disruption, or creation, of species interactions and processes within communities, likely amplifying the impact of climate change on ecosystems. Here, we studied the dispersal success of vertebrate species in a tropical montane ecosystem under a climate-induced uphill shift and assessed the derived impacts on community structures. Location: The Australian Wet Tropics bioregion. Method: We simulated the uphill shift of 7613 community assemblages across the elevational gradient using thermal resistance layers for movement analyses. Dispersal success was calculated as the probability of shifting given species’ dispersal ability and landscape composition. We then used dissimilarity indices to measure the potential changes in community structures resulting from the heterogeneous dispersal success among migrating species. Results: Dispersal success was strongly influenced by species’ dispersal ability, landscape composition and climate change. The heterogeneous dispersal success among migrating species induced marked temporal changes between community assemblages along the elevational gradient. The local extinction rate (i.e. the proportion of species unable to shift) was especially remarkable at high elevations, suggesting potential mass local extinctions of upland species. Furthermore, the increasing local extinction rate with elevation resulted in substantial declines in species co-occurrence in high-altitude ecosystems. Main conclusions: Our study highlights the escalating impact of climate change on community assemblages in response to climate-induced elevational shifts, providing a classic example of the "escalator to extinction." Future predictions of the impacts of climate change on ecosystems will benefit from improvements in understanding species interactions, population dynamics and species potential to adapt to a changing environment

    Target, tool, tenure and timing: the four T’s limiting the impact of traditional hunting in Indonesian Papua

    Get PDF
    Subsistence hunting has sustained human populations in New Guinea for millennia, without seriously affecting the highest levels of biodiversity on Earth. Recent changes to hunting practices, demographic, social and economic context and the introduction of large exotic species has significantly altered the dynamic of hunting and its potential effects in north-west New Guinea. In this paper we examine contemporary hunting practices of six ethnic groups from highland to coastal sites throughout Papua and West Papua provinces of Indonesia. Semi-structured interviews were used to examine hunting practices as well as customary rules and attitudes associated with hunting in the region and how they have changed in living memory. Each group indicated traditional restrictions on at least one of target, tool, timing or tenure, albeit in varied ways. Six different hunting tools were used and each hunter typically combined several tools while hunting. Religious and cultural factors deeply influenced hunting practices among the communities. We discuss the implications of these findings and conclude with recommendations to integrate local, village level governance and customary practices with regional and national law for more effective conservation and management of wildlife in the region while simultaneously respecting cultural heritage and local ecological knowledge

    Warmer Ambient Temperatures Depress Detoxification and Food Intake by Marsupial Folivores

    Get PDF
    Ambient temperature is an underappreciated determinant of foraging behaviour in wild endotherms, and the requirement to thermoregulate likely influences food intake through multiple interacting mechanisms. We investigated relationships between ambient temperature and hepatic detoxification capacity in two herbivorous marsupials, the common ringtail possum (Pseudocheirus peregrinus) and common brushtail possum (Trichosurus vulpecula) that regularly feed on diets rich in plant toxins. As an indicator of hepatic detoxification capacity, we determined the functional clearance rate of an anaesthetic agent, Alfaxalone, after possums were acclimated to 10°C [below the thermoneutral zone (TNZ)], 18°C [approximately lower critical temperature (LCT)], and 26°C [approximately upper critical temperature (UCT)] for either 7 days or less than 24 h. We then measured intake of foods with high or low plant secondary metabolite (PSM) concentrations under the same temperature regimes. After 7 days of acclimation, we found a positive correlation between the functional clearance rate of Alfaxalone and ambient temperature, and a negative relationship between ambient temperature and intake of foods with high or low PSM concentrations for both species. The effect of ambient temperature on intake of diets rich in PSMs was absent or reduced when possums were kept at temperatures for less than 24 h. Our results underscore the effects of ambient temperature in hepatic metabolism particularly with respect intake of diets containing PSMs. Given that the planet is warming, it is vital that effects of ambient temperature on metabolism, nutrition and foraging by mammalian herbivores is taken into account to predict range changes of species and their impact on ecosystems

    Collective nature of orbital excitations in layered cuprates in the absence of apical oxygens

    Full text link
    We have investigated the 3d orbital excitations in CaCuO2 (CCO), Nd2CuO4 (NCO) and La2CuO4 (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the dxy orbital clearly disperse, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen. We ascribe the origin of the dispersion as stemming from a substantial next-nearest-neighbor (NNN) orbital superexchange. Such an exchange leads to the liberation of orbiton from its coupling to magnons, which is associated with the orbiton hopping between nearest neighbor copper sites. We show that the exceptionally large NNN orbital superexchange can be traced back to the absence of apical oxygens suppressing the charge transfer energy.Comment: 18 pages, 7 figure

    UBVRI Light Curves of 44 Type Ia Supernovae

    Get PDF
    We present UBVRI photometry of 44 type-Ia supernovae (SN Ia) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SN Ia to date, nearly doubling the number of well-observed, nearby SN Ia with published multicolor CCD light curves. The large sample of U-band photometry is a unique addition, with important connections to SN Ia observed at high redshift. The decline rate of SN Ia U-band light curves correlates well with the decline rate in other bands, as does the U-B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ~40% intrinsic scatter compared to B-band.Comment: 84 authors, 71 pages, 51 tables, 10 figures. Accepted for publication in the Astronomical Journal. Version with high-res figures and electronic data at http://astron.berkeley.edu/~saurabh/cfa2snIa

    Coordinated Activation of Candidate Proto-Oncogenes and Cancer Testes Antigens via Promoter Demethylation in Head and Neck Cancer and Lung Cancer

    Get PDF
    Background: Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC. Methodology/Principal Findings: We noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells. Conclusions/Significance: Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs i

    Nutritional correlates of koala persistence in a low-density population

    Get PDF
    It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus) populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts) compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence.IW and WF received a grant from New South Wales (NSW) Department of Environment, Climate Change & Water

    Genomic comparisons reveal biogeographic and anthropogenic impacts in the koala (Phascolarctos cinereus): a dietary-specialist species distributed across heterogeneous environments

    Get PDF
    The Australian koala is an iconic marsupial with highly specific dietary requirements distributed across heterogeneous environments, over a large geographic range. The distribution and genetic structure of koala populations has been heavily influenced by human actions, specifically habitat modification, hunting and translocation of koalas. There is currently limited information on population diversity and gene flow at a species-wide scale, or with consideration to the potential impacts of local adaptation. Using species-wide sampling across heterogeneous environments, and high-density genome-wide markers (SNPs and PAVs), we show that most koala populations display levels of diversity comparable to other outbred species, except for those populations impacted by population reductions. Genetic clustering analysis and phylogenetic reconstruction reveals a lack of support for current taxonomic classification of three koala subspecies, with only a single evolutionary significant unit supported. Furthermore, similar to 70% of genetic variance is accounted for at the individual level. The Sydney Basin region is highlighted as a unique reservoir of genetic diversity, having higher diversity levels (i.e., Blue Mountains region; AvHe(corr)-0.20, PL% = 68.6). Broad-scale population differentiation is primarily driven by an isolation by distance genetic structure model (49% of genetic variance), with clinal local adaptation corresponding to habitat bioregions. Signatures of selection were detected between bioregions, with no single region returning evidence of strong selection. The results of this study show that although the koala is widely considered to be a dietary-specialist species, this apparent specialisation has not limited the koala's ability to maintain gene flow and adapt across divergent environments as long as the required food source is available

    Lactation

    No full text
    Lactation is one of the most important innovations that make mammals different from the other vertebrates. During lactation the female mammal feeds her newborn young with milk - a highly nutritious secretion of the mammary glands unique to mammals. Lactation allows mammals flexibility in where and when they reproduce, as well as the types of resources that can support them. The resources used during\ud lactation can come from body stores before being converted to milk. So lactation allows mammals to harvest scarce resources over a long period, then feed the young at a suitable place and time (Pond 1984). This is especially important in large mammals where the developmental time is much longer than the seasons of plentiful resources, such as the arctic summer. Ice-breeding seals store resources harvested over months or years, then transfer them in milk to their babies in as little as four days. Bears use stored resources to lactate during their winter dormancy when they\ud cannot be active and feeding. Lactation also allows the larger, more experienced mother to feed young that could not survive on an adult diet because they are too small, inexperienced or have an immature gut without symbiotic bacteria. This is especially important in herbivores that need to develop the gut before being able to survive on an adult diet, or others where the young need to learn how to hunt or forage. So lactation is important because it allows mammals to invest in their young well after birth and up to a much larger size than could possibly be born. It allows the mother to convert a poor or variable environmental resource into a rich input to her offspring, allowing her to sUppOli her offspring through the difficult process of developing the ability to survive on an adult diet, learning to forage or catch prey and developing the digestive system (Pond 1984)
    corecore